תורת מספרים טהורה צריכה להשתחרר מן המינוחים הגאומטריים שיש כיום באריתמטיקה: במקום המונח "מספר משולש" עליה למצוא מונח שיסמן את הצטברות המספרים מאחד ועד המספר המבוקש.
אין במספרים מרחק שווה בין מספר למספר, כמו בגיאומטריה, ולכן מושגי המרחק אינם רלוונטיים בהם.
ריבוע של מספר הוא חזקה. זה לא רלוונטי לאריתמטיקה שניתן לסדר נקודות בצורת ריבוע כך שמספרן הוא מספרו של המספר בחזקה שנייה.
וכך גם לגבי מספרים מעוקבים לא רלוונטי לאריתמטיקה טהורה שהם בצורת קובייה. הם בחזקה שלישית ותו לא.
משפט פיתגורס הוא משפט גיאומטרי טהור שקובע יחס בין שטחי ריבועי הניצבים במשולש ישר זווית לבין שטח הריבוע שעל היתר שלו. מספרים שכרוכים בו [כמו 3,4 5] לא שייכים לגאומטריה.
גם פאי הוא עניין של גאומטריה. הוא היחס שבין היקף העיגול לקוטרו. כל העניין המספרי העצום שהמספר הזה עורר אינו שייך לגאומטריה. הפיתגוראים המשיכו לפתח את הגיאומטריה אך עצרו את פיתוח האריתמטיקה, אחרי שגילו [באופן גיאומטרי] שהמספרים הלא שלמים מסבכים להם את החיים. באריתמטיקה נתנו כבוד ללא שלמים שבהם זלזלו הפיתגוראים. פאי הוא מספר לא שלם שנולד בגיאומטריה ואומץ באריתמטיקה. הוא בן כלאיים. איזו הצדקה יש לו באריתמטיקה? הוא לא מספר לא שלם מהסוג של יחס הזהב שהוא יחס גיאומטרי בין קווים.
טשטוש התחומים בין גאומטריה למתמטיקה בולט במשפט לינדמן שהוא הוכחה מתמטית שממנה נובע שאי אפשר לבנות באמצעות סרגל ומחוגה עיגול ששטחו שווה לשטח של ריבוע.
אין במספרים מרחק שווה בין מספר למספר, כמו בגיאומטריה, ולכן מושגי המרחק אינם רלוונטיים בהם.
ריבוע של מספר הוא חזקה. זה לא רלוונטי לאריתמטיקה שניתן לסדר נקודות בצורת ריבוע כך שמספרן הוא מספרו של המספר בחזקה שנייה.
וכך גם לגבי מספרים מעוקבים לא רלוונטי לאריתמטיקה טהורה שהם בצורת קובייה. הם בחזקה שלישית ותו לא.
משפט פיתגורס הוא משפט גיאומטרי טהור שקובע יחס בין שטחי ריבועי הניצבים במשולש ישר זווית לבין שטח הריבוע שעל היתר שלו. מספרים שכרוכים בו [כמו 3,4 5] לא שייכים לגאומטריה.
גם פאי הוא עניין של גאומטריה. הוא היחס שבין היקף העיגול לקוטרו. כל העניין המספרי העצום שהמספר הזה עורר אינו שייך לגאומטריה. הפיתגוראים המשיכו לפתח את הגיאומטריה אך עצרו את פיתוח האריתמטיקה, אחרי שגילו [באופן גיאומטרי] שהמספרים הלא שלמים מסבכים להם את החיים. באריתמטיקה נתנו כבוד ללא שלמים שבהם זלזלו הפיתגוראים. פאי הוא מספר לא שלם שנולד בגיאומטריה ואומץ באריתמטיקה. הוא בן כלאיים. איזו הצדקה יש לו באריתמטיקה? הוא לא מספר לא שלם מהסוג של יחס הזהב שהוא יחס גיאומטרי בין קווים.
טשטוש התחומים בין גאומטריה למתמטיקה בולט במשפט לינדמן שהוא הוכחה מתמטית שממנה נובע שאי אפשר לבנות באמצעות סרגל ומחוגה עיגול ששטחו שווה לשטח של ריבוע.
אין תגובות:
הוסף רשומת תגובה