יום חמישי, 4 ביולי 2019

המעבר מאחד לשניים בשלושת הממדים

המעבר מאחד לשניים במספרים נעשה פשוט באמצעות הוספה של אחד.

מאחד בריבוע לשניים בריבוע באמצעות הגנומון 3. [1+3]

מאחד בשלישית לשנים בשלישית באמצעות הכפלת הגנומון [2+6]


בגיאומטריה האחד הוא קטע קו והשניים הוא קטע קו באורך כפול.

כשטח הוא מוכפל במלבן שאורכו שני ריבועים [1]
כנפח באמצעות תיבה שאורכה שתי קוביות. אבל מעניין להזכיר שהיוונים הקדמונים בנו ריבוע ששטחו כפול על אלכסון של ריבוע של אחד, והתמודדו ללא הצלחה עם הכפלת נפח הקובייה באמצעות סרגל ומחוגה. הם הצליחו לפתור את הבעיה באמצעים אחרים. ניתן לבנות משמונה קוביות זהות בגודלן קובייה של שניים-בשלישית כמו בגנומון של המספרים [2+6].
=
[1]

מעניין לראות את משפט פיתגורס כהוכחה לבניית הריבוע של חמש משני הריבועים שקדמו לו במסגרת בניית המספרים לפי הממד השני 

אין תגובות:

הוסף רשומת תגובה